

ARTICLE ID: 62

Mycoinsecticide Fungi: A Sustainable Option for Insect-Pest Management

R. P. Singh¹, Durga Prasad², Abhik Patra¹, Gagan Kumar¹, B. K. Singh¹, Pankaj Malkani¹ and M. S. Kundu³

¹Krishi Vigyan Kendra, Nakatiaganj, West Champaran, Dr RPCAU, Bihar ²Associate Professor, College of Agriculture, Baytu, Agriculture University, Jodhpur, Raj.

³DEE-Directorate of Extension, Education, Dr RPCAU, Pusa, Bihar E-mail: <u>rpskvk.22@gmail.com</u>

Abstract

Agriculture is vital to India's economy. Insect infestation significantly reduces agricult ural crop productivity. To satisfy the needs of India's and other emerging countries' growing populations, the Indian agricultural system need a sustainable agricultural production for future generations. Crop plants are susceptible to biotic and abiotic stresses caused by insect pests, plant diseases, and poor growth circumstances. These variables are to blame for massive plant productivity losses (up to 40% crop losses) globally. Chemical pesticides are frequently used to protect plants. This is due to an increase in insect resistance to a variety of chemical compounds included in plant protection solutions. Chemical pesticides have a negative influence on non-target species, resulting in biodiversity loss, food safety issues, insect resistance, and revival in novel locations. Over the last few decades, natural and biological pest and disease control of cultivated plants has been given more attention in the effort to minimize agricultural production's dependency on chemical products. Employing biological creatures, predators, parasitoids, and microorganisms such as viruses, bacteria, and fungus to control pests has shown to be a successful and sustainable pest management strategy. Among the aforementioned, fungi, particularly insect-pathogenic species, have been used for more than 150 years. This article discusses the current state of Entomopathogens in

agriculture industry. Entomopathogens as bio-pesticides offer a safe, natural, and costeffective alternative to harmful chemical pesticides. There are currently few entomopathogenic formulations on the market, which are insufficient to fulfil farmer demand due to a lack of new breakthroughs in research and legislation in India. When compared to manufactured chemical pesticides, the production and consumption of entomopathogens is restricted. In this light, this article discusses the possibility of EPF as alternatives or may be alternatives to chemical pesticides in plant protection.

Key words: Entomopathogenic fungi, bio-insecticide, brand name, toxins, target insect-pets

Introduction

Agricultural pests include plant pathogens (fungi, oomycetes, bacteria, viruses, and nematodes), weeds, arthropods (mostly insects and mites), mollusks (slugs and snails), and a few vertebrates. They impair crop output and quality by eating on them. Pest species are thought to number in the millions worldwide. They have a significant influence on agricultural production, which has resulted in a 40% drop in potential global crop yields. Agriculturists rely significantly on chemical pesticides and inorganic fertilisers to tackle these challenges in order to assure maximum output of produced plants. Another constraint for agriculturists is their overdependence on synthetic fertilisers to improve plant growth. This is due to the fact that overuse of these compounds has a number of negative consequences for users, non-target organisms, and the environment. As the world's population is predicted to reach 9.1 billion by 2050 (Liu et al., 2017), efforts are being made to maintain sustainable agricultural production. However, excessive use and reliance on synthetic pesticides and fertilisers, climate changes, poor land management, and widespread urbanisation are some of the problems hurting these efforts. The potential use of entomopathogenic fungi (EPF) as biocontrol agents against herbivores is an environmentally viable alternative insect pest management strategy. In the right setup, EPF are known for their capacity to infect insects and cause sickness by entering their cuticles. More than 700 species from around 90 distinct genera have been identified as insect-pathogenic fungus to date. These strains include the most well-known members of the genera Beauveria, Metarhizium, Isaria, Hirsutella, and Lecanicillium. The most widely researched fungal species include Beauveria bassiana

(Balsamo-Crivelli) Vuillemin, *Isaria fumosorosea* Wize, *Metarhizium anisopliae* (Metschnikoff) Sorokin, and *Lecanicillium lecanii* (Zimmerman) Viegas (Chen *et al.*, 2015).

The term entomogenous is derived from two Greek words: "entomon" (insects) and "genous" (arising in). As a result, the etymological definition of entomogenous microorganism is "microorganisms that grow in insects." Entomogenous microorganisms are directly involved in natural or microbiological management of insect pests and are connected to human welfare, which has piqued the interest of microbiologists, molecular biologists, and entomologists in recent years. Interestingly, the idea of using microbes for pest management is not a new one. Agostino Bassi (1773-1856) identified and reported the first entomopathogenic fungus in 1835 that a fungus could cause a deliberately transmissible disease in silkworm (Lord, 2007), which caused white muscardine sickness in insects and was later termed *Beauveria bassiana* (Balsamo) Vuillemin (Hypocreales, Cordycipitaceae) (Rehner *et al.*, 2005). After a few years, Elias Metschnikoff (1845-1916) identified the green muscardine, a fungal disease that attacks insects and is caused by *Metarhizium anisopliae* Metschnikoff Sorokin (Hypocreales, Clavicipitaceae) (Zimmermann *et al.*, 1995).

Entomopathogenic fungi (EPF) with a vast and plentiful variety are a boon to sustainable pest management. Because of their environmental friendliness and bio persistence, entomopathogenic fungi prefer to kill insects at different phases of their life cycle. EPF species from numerous classes that infect insects have been found. These insect pathogens have a wide range of alterations and contaminating capacities employing facultative and obligate pathogens. These Entomopathogenic fungi are descended from the Deuteromycota, Ascomycota, and Zygomycota divisions. Mycoinsecticide/EPF is the employment of fungus in biological processes to minimise insect density and thereby crop damage. Biological plant protection with entomopathogenic fungi is an important component of a long-term pest management strategy. When compared to conventional pesticides, entomopathogens offer significant benefits as biocontrol agents. Low prices, great efficiency, safety for beneficial creatures, residue reduction in the environment, and improved biodiversity in human-managed ecosystems are some of the benefits. This article discusses the details of entomopathogenic fungi, mode of action, target pests, trade name, manufacturer/country and their detailed usage description in the current scenario (Table 1).

Some important entomopathogenic fungi (EPF) using for pest management.

EPF are an essential component of myco-insecticides in horticulture, forestry, and agriculture, and are a vital component of integrated pest management strategies as biological control agents against insect pests and other arthropods. The important genera are illustrated in table 1 and details as given below-

Genus –Beauveria

It is an entomopathogenic fungus used as a bio-pesticide in crop pest management. It lives in the soil saprophytically and frequently produces large epizootics that kill out insect populations on crops. The two more important species are in this group i.e. *Beauveria bassiana* and *Beauveria brongniartii*. These parasites enter the host insect body by food or contact with the host cuticle, where they multiply. It creates poisons such as beauvericin, bassianocide, and others inside the host body, causing paralysis and eventually killing the insects within four or five days. They are particularly useful in controlling sucking pests and caterpillars that infest agricultural plants. These entomopathogenic fungi are used to manage caterpillars such as the yellow stem borer and leaf folder of rice, the white grub of groundnut, the coconut rhinoceros beetle, sugarcane pyrilla, caterpillars of pulses, tomato, and cotton, diamond back moth, leaf eating caterpillars of tobacco and sunflower, and others in an environmentally friendly manner.

Genus-Verticillium

It is a naturally occurring entomopathogenic fungus which can be used as a biopesticide. The two most important species in this genus are *Verticillium chlamydosporium* and *Verticillium lecanii*. The fungus *V. lecanii* is widely spread and can produce massive outbreaks in tropical and subtropical climates, as well as in warm and humid conditions. *Verticillium lecanii* is most effective to manage the whitefly, thrips, mealy bug and several aphid species of vegetables and ornamentals etc.

Genus-Metarrhizium

It is a fungal insecticide for use against a wide range of insects including soil insects, caterpillars, sucking pests and locusts. *Metarhizium anisopliae*, *Metarhizium album* and *Metarhizium flavoviride* are the three most significant species in the genus. *Metarhizium*

anisopliae is a fungus that may be harmful to insects. It is known to attack over 200 species of insects covering seven orders. This pathogenic fungus is mostly used to manage the coconut rhinoceros beetle, groundnut cut worm, rice brown plant hopper, diamond back moth, and sugarcane early shoot borer, top shoot borer, and internode borer.

Genus-Nomuraea

It is also an entomopathogenic fungus used as a bio-pesticide against *Sopdoptera litura*, Helicoverpa armigera of groungnut, sorghum and chickpea etc. *Nomuraea rileyi* is a dimorphic hyphomycete that may induce epizootic death in various insects. *N. rileyi's* host specificity and environmentally favourable characteristics support its application in insect pest management. This biological control is effective against a variety of insect hosts, including *Trichoplusia* sp., *Heliothis zea*, *Bombyx mori*, *Plathypena scabra*, and others.

Genus-Paecilomyces

Paecilomyces fumosoroseus is a major bio-control agent against whiteflies that causes "yellow muscardine." The ability of this fungus to grow extensively over the leaf surface under humid conditions is a characteristic that certainly enhances its ability to spread rapidly through whitefly populations. P. *fumosoroseus* is best for controlling the nymphs of whitefly. These fungi cover the whiteflies body with mycelial threads and stick them to the underside of the leaves. The nymphs show a "feathery" aspect and are surrounded by mycelia and conidia. This fungus is used to manage yellow and red mites, whiteflies, and other insects in both field and greenhouse environments.

Genus-Hirsutella

H. thompsonii, H. gigantea, and *H. citriformis* are the three most significant species in the genus *Hirsutella. H. thompsonii* is used to control the citrus rust mite. This bio-control is also effective against the Acarida, Lepidoptera, and Hemiptera insect families

EPF/ Mycoinsecticid	Brand Name	Formulatio n	Target Pests	Сгор	Producer/ Country
es Beauveria bassiana	Mycotrol	WP, ES, OF	Whiteflies, Thrips, Aphids	Field crops	Mycotech, USA
	Biowonder	WP	Rice pests	Rice	Indore Biotech India

Table 1: Globally available Bio-insecticides/Mycoinsecticides/EPF formulations

Biosoft	WP	Helocoverpa and sucking pests	Tomato, Chickpea, Pigeon pea, Field pea and other several crops	Agri land Biotech, India
Conidia	WDG	Coffee berry borer	Coffee	AgrEvo, Germany
Naturalis	ES	Sucking insects	Cotton, Glasshouse crops	Troy BioScience, USA
Ostrinol	G	Corn borer	Maize	NPP (Calioppe), France
Mycojaal	WP	Diamond black moth	Cabbage	Pest Control India (Pvt) Ltd, India
Beevicide	WP	Borer type pests	Several crops	-
Botani Gard	ES	Whiteflies, thrips, aphids, psyllids, mealybugs	Several crops	LAM International, USA
Botani Gard	WP	-do-	-do-	-do-
Bauveril	WP	Beetles, Butterflies and Moths	Several crops	Laverlam S.A., Colombia
Bio-Power	WP	Stem borers, cut worms, root grubs, leafhoppers, whiteflies, aphids, thrips and mealy bugs	Several crops	T. Stanes, India
Boverin	WP	Colorado potato beetle; Leptinotarsa decemlineata, and the codling moth; Cydia pomonella	Several crops	Biodron, Russia
Conidia	WDG	Coleoptera	-do-	Hoechst

		(Curculionidae)-Beetles		Schering Colombia and AgrEvo, Germany
Naturalis-L	WP	Coleoptera (Chrysomelida e, Curculionidae) , Hemiptera (Miridae, Cicadellidae, Aleyrodidae, Aphididae, Psyllidae), Lepidoptera, Thysanoptera (Thripidae)	-do-	Andermatt Biocontrol Troy Biosciences Inc., Switzerland, United States
Racer BB	WP	Lepidoptera (Noctuidae)	-do-	SOM Phytopharma, India
Proecol	WP	Army worm	Paddy, Maize etc.	Venezuela
Bea-Sin	WP	Paper weevil. Boll weevil, Whiteflies	Field crop	Agrobiologic os Noroeste (Agrobionsa), Mexico
Boverol- Spofa	WP	Colorado potato beetle	Potato	Czechoslovak ia
Ballvéria	WP	Whiteflies	Tomato, Chilli	Ballagro Agro Tecnologia (Brazil)
Bovebio	WP	Whiteflies, Mites	Tomato, Chilli	Biofungi – Industriae Comerciode Defensivos Biológicose Inoculantes (Brazil)
Bio Expert	WP	Whiteflies, Thrips	Tomato, Okra, Chilli	Live Systems Technology (Colombia)
Adral	WP	Aphids	Mustard	Bio-Crop (Colombia)
 Broadband	WP	Whiteflies, Thrips, Mites, Diamondback	Cabbage, Tomato, Chilli	BASF South Africa

			moth		
	Bassicore	SC	Whiteflies	Tomato, Chilli	Core Biotechnolog y (Colombia)
	BBC	WP	Bollworm, Cutworms, Root grub Termite, Whiteflies, Thrips, Mealy bug, Plutella	Several crops	Sri Biotech Laboratories India Ltd.
Beauveria bassiana PDRL1187		WP	Mustard Ahpid, <i>Lipaphis</i> erysimi, Aphis craccivora Koch	Mustard, Tomato, Wheat etc.	-
Beauveria brongniartii	Betel	G	Scarab beetle Larvae	Sugarcane	NPP (Calioppe), France
	Melocont	G/WC	Scarab beetle	Pasture	Kwizda, Austria
	Engerlingspi lz	G/WC	Scarab beetle Larvae	Pasture	Andermatt, Switzerland
	Biolisa	wC	Cerambycid beetles	Inga and Ficus	Nitto Denco, Japan
Metarhizium anisopliae	BIO 1020	G	Black vine weevil	Glasshous e Ornament al crops, Nursery stock	Bayer, Germany
	Metarhizium	G/WC	Sucking pests	Several crops	Multiplex, India
	Multiplex	WP	Root grubs	Several crops	Multiplex, India
	Bio Magic	WP	Brown plant hopper	Rice	T. Stanes, India
	Bio-Blast TM	WP	Termites	Houses	Ecoscience, USA, Brazil, Colombia
	Achieve	WP	Mites	Several crops	Real IPM (Kenya)
	Bio-Catch- M	WP	Hemiptera (Aleyrodidae, Aphididae)	-do-	T. Stanes, India

	Bio-Cane	WP	Sugarcane	Sugarcane	Granules
			pest; grayback		Becker-
			canegrub		Underwood,
					Australia
	Bio-Path	WC	Blattodea	Field crops	EcoScience,
			(Blattellidae,		USA
			Blattidae)		
	Campaign	WP	Mealybugs,	Field crops	Real IPM,
			Thrips, Fruit		Ghana,
			flies,		Uganda
			Mealybugs	~	
	Cobican	WP	Sugarcane	Sugarcane	Probioagro,
			spittle bud		Venezuela
	Metrocid	WP	Root grubs,	Groundnut	Sri Biotech
			BPH, Termite	, Paddy	Laboratories India Ltd.
	Kalichakra	WP	Root and	Several	Agrilife
			beetle grubs,	field crops	International
			Cutworms,	-	Panacea, Ltd.
			A phids		India
	Jasmeta	WP	Termite and	Field crops	Shri Ram
			Weevils		Solvent
					Extraction,
					India
	Biostorm	WP	Root weevils,	Several	Varsha Bio
			Termite,	field crops	Science and
			Hoppers,		Technology,
			White grub		India
Metarhizium	Bio Green	G	Red-headed	Pasture/Tu	Bio-Care
flavoviride			cockchafer	rf	Technology,
	~		-	~	Australia
	Green	WP, OF	Locusts,	Several	CABI, UK
16 . 1	Muscle		Grasshoppers	crops	D' 1 ' 1
Metarhizium	Green	WP, OF	Locusts,	Several	Biological
anisopliae Var.	Muscle		Grasshoppers	crops	control
acriaum					products SA
					(Ply) Lla.
					from UV
					$\begin{array}{ccc} \text{IIOIII} & \text{UK} \\ \text{Soth A frice} \end{array}$
Lacanicillium	Vertalee	W/D	Aphide	Tomato	Koppert
longisporture	v ertalee	VV F	Whiteflies and	Chilli and	Holland
(Old name:			Thrips	Glassbouse	Homanu,
Verticillum			1111123	crops	
lecanii)	Mycotal	WP	Anhids	Glasshouse	Konnert
	ivi y cotai	**1	Whiteflies and	crons	Holland
			memes and	crops	rionana,

			Thrips		
	Verticare	WP	Mealybugs &	Citrus	Viswamitra
			Scales		Bio Agro,
					India
	Biocatch	WP	Whiteflies	Cotton	T. Stanes,
					India
	Inovert	WP	Aphids,	Glasshouse	Inora, India
			Scales,	crops	
			Mealybugs		
	Verelac	WP	Sucking pests	Several	-
				crops	
	Bioter	WP	Effective	Several	-
			against	crops	
			termites		
Paecilomyces	PFR-97 TM	WDG	Whiteflies/	Glasshouse	Thermo
fumosoroseus			Thrips	crops	Trilogy, USA
(Isaria					Eco-tech,
fumosoroseus)					USA
	Prioroty	WP	Mites (Mites)	Wide	T. Stanes,
				range of	India
				crops	
	Pae-Sin	WP	Whiteflies	Tomato,	Agrobionsa,
				Chilli	Mexico
	Bemisin	WP	Whiteflies	Tomato,	Probioagro,
				Chilli	Venezuela
Hirsutella	Mycohit	WP	Mites, Aphis	Citrus,	_
thompsonii			craccivora	Cowpea	
	, i i i i i i i i i i i i i i i i i i i		Koch		
Cladossporium	-	WP	Aphis	Cowpea	-
oxysporium			craccivora		
			Koch		
Nomuraea rileyi	Numoraea	WP	Lepidoptera	Several	Colombia
	50			crops	
M. anisopliae +	Tri-Sin	WP	Psyllid	Citrus and	Mexico
B. bassiana + I.				other crops	
fumosoroseus				-	
Lagenidium	Laginex	AS	Larvae of	-	USA
giganteum	_		most		
			pest mosquito		
			species		
Conidiobolus	Vector 25	WP	Thrips, Aphid.	Several	Mycolab,
thromboides	SL		Whiteflies	crops	South Africa
	1 @ 1 1/	-8 c z $/$	5 1013 11		1 05 01

WP= Wettable powder @ 1 x 10^8 cfu's/gram or 5 x 10^{13} conidia/ha; G= Granular; OF= Oil flowable; WC= Whole culture; WDG=Water-dispersible granular; AS= Aqueous suspension EC= Emulsifiable concentrate; SC= suspension concentrate

Mode/mechanism of action of entomopathogenic fungi

Insect pathogenic fungus kill insects in a variety of ways, including starving to toxin production. These insects pathogenic fungus generate several toxins and extracellular enzymes such as proteases and chitinases. Cuticle is the principal barrier to infection in insects since it is the primary avenue of fungal penetration.

As a result, it requires either physical or enzymatic techniques to breach the impenetrable cuticle. The infection process begins with spore contact with the host cuticle. Most fungi have an infective unit that is a spore, commonly a conidium. Conidia are usually sticky to the cuticle or exude adhesive mucus when they enlarge during pre-germination. In favourable conditions, the conidium germinates into a short germ tube that produces tiny swellings called appresoria. The appresorium adheres to the cuticle and sends out an infection peg, which gives the fungus with the solid connection it requires to physically push its way into the host. The hyphae then penetrates the insect cuticle by enzymatic chitin and protein disintegration, first dissolving the cuticle and then entering the insect's haemocoel and internal organs. The infectious fungal mycelium invades the insect until it is completely filled with the fungus and becomes quite solid to the touch. Following that, conidiophores are generated, which erupt through the cuticle and create spores on the exterior of the fly, infecting surrounding healthy insects as well. The fungus produces poisons that kill the host by mechanically obstructing the tissues.

Toxins are generated by several insect pathogenic fungi (Table 2), and many of them help in pathogenesis and serve an insecticidal role. While certain other fungus create antibacterial compounds. Destruxins from Metarhizium species are among the fungal metabolites that promote the pathogenicity of the fungus. Beauvericins are generated by Beauveria species. These metabolites are harmful to invertebrates as well.

Table 2: Some important toxins produced by the various entomopathogenic fungi

Toxins	Fungus that produces toxins	Mode of general infection
Beauvericin	Beauveria bassiana, Isaria sp.	Cytotoxic effect and insecticidal
	Fusarium sp.	properties. Ionophore is soluble in
		lipid layers and increases
		membrane permeability for
		specific ions. In this way, it
		damages the cell organelles and
		their functions.
Destruxins	Metarhizium anisopliae	Immunodepressant activity in
		insect and cytotoxic effect.
Bassianolide	B. bassiana, Verticillium	Acts as ionophore, toxic effect on
	lecanii	insects
Leucinostatins	Paecilomyces lilacinus,	Insecticidal activity by interfering
	Paecilomyces mar <mark>quandi</mark> i	with oxidative phosphorylation
Efrapeptins	Tolypocladium niveum	Inhibitors of mitochondrial
		oxidative phosphorylation and
		ATPase activity.
Bassionolid	Beauver <mark>ia bas</mark> siana	Ionophore is soluble in lipid
		layers and increases membrane
		permeability for specific ions. In
		this way, it damages the cell
		organelles and their functions.
Siklosporin A	Beauveria bassiana,	Blocks a step in Ca ++ dependent
	Toly <mark>p</mark> ocladium sp., Verticillum	signal transduction in vertabrate T
	sp., Fusarium sp.	cells. This causes
		immunosuppression. It can also
		suppress insect defence cells.
Hirsutellin A	Hirsutella thompsonii	The ribosomal inhibitory protein
		(RIP) causes a specific cleavage
		of the rRNA and inhibits protein
		synthesis.
Swainsonin	Metarhizum anisapliae	Indolizidine alkaloid
Sitokhalasin	Metarhizum anisapliae	Blocks the elongation of the actin
		filament.
Dipicolinic acid and	Verticillium lecanii	It causes atony. Interfere, the
Didepsi peptide		process of chitin formation and
(protein) Bassianolide		exposure the insect easily to the
		attack of natural enemy.

Source: Boucias and Pendland, 1998; Kumar et al., 2020

Method of application of EPF/Mycoinsecticide:

- 1. Soil application/treatment: While preparing the field, @ 250-300 gram per square meters or 1-2 kg per acre (powder formulation) is added in 80-100 kg well decomposed farm yard manure (FYM). Mixed thoroughly, cover with jute bag/sugarcane leaves/paddy straw and kept for 1-2 week in shade for proper multiplication. Maintain moisture and mix the mixture in every 3-4 days intervals before broadcasting in the field. Apply well mixed/decomposed EPF based FYM to the field before 15 days of sowing. This mixture can be applied in furrow/pit/pot and at the time of transplanting/sowing for termite, white grub and other soil pest management. It should be repeated after 2-3 week interval.
- 2. Spraying: Mixing 1.0-1.5 kg of EPF culture in 200 liters of water with sticker should be sprayed in morning or evening for pest management (sucking pests, bug and beetles etc.) in one acre area. Mix the culture in water at in appropriate quantity and stir well till creamy, leave it for 3-4 hours. Empty the cream into spray tank together with required amount of water and agitate well. Spray immediately after preparation. Apply with high volume spraying equipment @ 2.5-5 gram/liter of water.
- **3.** Soil drenching: 1.0-1.5 kilogram EPF culture formulation mix in 200 litre of water and drench the soil in one acre area or @ 250 gm/5 litre of water in soil from time to time for management of white grub and other soil pests. Maintain optimum soil moisture while applying. Repeat application at 2-3 week interval as and when required.

Advantages and disadvantages of Entomopathogenic Fungi

The practical application of EPF has various benefits and drawbacks. These are listed below.

Advantages

- In certain circumstances, EPF have a high host selectivity for arthropod pest management. As a result, they have no effect on beneficial insect populations. Some of them, however, may have a very broad host range.
- Microbial pesticide residues provide no danger to humans or other beneficial creatures. Farmers can use them even when a crop is nearly ready for harvest.
- They persist in the environment for a long period after application, resulting in the rapid mortality of the arthropod hosts.

- They do not produce issues like as pesticide resistance while managing arthropod pests and hence provide long-term control.
- Microbial pesticides may become established in succeeding generations of pests or in their habitats, providing pest control throughout the following season or generation.
- > They are accessible to development through biotechnological techniques.

Disadvantages

- The most significant drawback is that they are vulnerable to UV light, as well as low humidity and high temperatures.
- Because microbial insecticides are designed to inhibit certain pest species or groups, they may only control one pest in a field. Other pests that are present in the treated area continue to inflict damage.
- > They are adversely affected by fungicides.
- Synthetic pesticides often kill arthropod pests quickly, while EPF take a longer time (sometimes 1-2 weeks).
- > The expenses of production are often greater than those of many synthetic insecticides.

References

- Boucias, D. G. and Pendland, J. C. (1998). Entomopathogenic Fungi: Fungi Imperfecti. In: Principles of Insect Pathology, Boucias, D. G. & J. C. Pendland (Eds.). Klewer Academic Publisher, Boston, pp. 321-364.
- Chen, X., Li, L., Hu, Q., Zhang, B., Wu, W., Jin, F., et al. (2015). Expression of dsRNA in recombinant Isaria fumosorosea strain targets the TLR7 gene in Bemisia tabaci. BMC Biotechnol. 15: 64. doi: <u>10.1186/s12896-015-0170-8</u>.
- Kumar, S., Kumar, S., Bhandari, D. and Gautam, M. P. (2020). Entomopathogens, Pathological symptoms and their role in present scenario of agriculture: A review, Int. J. Curr. Microbiol. App. Sci., 9(12): 2110-2124.
- Liu, H., Carvalhais, L. C., Crawford, M., Singh, E., Dennis, P. G., Pieterse, C. M. J., et al. (2017). Inner plant values: diversity, colonization and benefits from endophytic bacteria. Front. Microbiol. 8: 2552. doi: <u>10.3389/fmicb.2017.02552</u>.

- Lord, J.C., 2007. From Metchnikoff to Monsanto and beyond: the path of microbial control. J. *Invertebr. Pathol.* **89** (1): 19–29.
- Rehner, S. A., Vega, F. E., Blackwell, M. (2005). Phylogenetics and Insect Pathogenic Genus Beauveria. In Insect–Fungal Associations: Ecology and Evolution; Oxford University Press, Inc.: New York, NY, USA; pp. 3–25.
- Zimmermann, G., Papierok, B., Glare, T. Elias Metschnikoff, Elie Metchnikoff or Ilya Ilich Mechnikov (1845–1916) (1995). A Pioneer in Insect Pathology, the First Describer of the Entomopathogenic Fungus *Metarhizium anisopliae* and How to Translate a Russian Name. Biocontrol Sci. Technol., 5: 527–530.

